网站地图 邮箱登陆 留言板 English 中国科学院
机构概况  
机构简介 所长致辞
现任领导 历任领导
学术委员会 学位委员会
院士专家 机构设置
历史沿革 院所风貌
通知公告
学术活动
题  目:先进制造技术发展展望
报告人:王大森
时  间:2021-03-03 14:00
地  点:四米楼第一会议室
题  目:“青新”沙龙泛学术交流活动第六期——太赫兹通信技术概述
报告人:李亚添
时  间:2020-07-31 11:30
地  点:学术交流中心沙龙
 您现在的位置:首页 > 科学传播 > 科普站点 > 生活科普
用“光”改变世界——应用光学国家重点实验室
  2018-05-24
打印 关闭

  光,无处不在,无所不及。 

  光,不只是照亮世界,从第一台天文望远镜诞生到遍及全球的光纤通讯,光对科学、社会、人类产生的了重要而广泛的影响。 

 

 

  今天小编带你走进的应用光学国家重点实验室,就是一个专注于用“光”改变世界的地方。 

  应用光学国家重点实验室是我国设立最早的国家重点实验室之一,依托单位为中科院长春光机所。实验室的主要创建者是新中国光学事业的奠基人、两院院士王大珩先生。 

  长春光机所始建于1952年,是新中国在光学领域建立的第一个研究所。这里诞生过中国第一台红宝石激光器、第一台大型电影经纬仪等多种先进仪器设备,创造了十几项“中国第一”,被誉为“中国光学的摇篮。

  上世纪80年代,为进一步加强光学应用基础研究,大珩先生组织应用光学国家重点实验室启动建设,经过30多年的发展沉淀,实验室发展并形成了目前主要有短波光学、空间光学、前沿光学技术与应用三个研究方向。 

  说了半天,应用“光学”到底可以做哪些改变世界的事情呢?快让小编带你看看吧。 

  短波光学——精细至极 

  沸沸扬扬的“中兴事件”把国人的眼球目光都汇聚到了“芯片”这个看似不起眼却牵一发而动全身的关键器件上。芯片制备所涉及到的一系列高端设备也就愈发显得弥足珍贵,而这其中最为重要的就是光刻机。光刻投影物镜则是光刻机中最核心的部件,它的设计与制造代表着当代精密光学与精密机械的最高水平。 

  应用光学国家重点实验室自2008年起即承担了国家“极大规模集成电路制造装备及成套工艺”科技重大专项(简称02专项)中的两大核心任务,“高NA浸没光学系统关键技术研究”和“极紫外光刻关键技术研究” ,分别瞄准了产线应用和前沿攻关。集成电路制造技术,而高精度光刻机就是打破封锁、解决问题的钥匙。可你知道吗,高精度光刻机的核心关键部件就是极紫外光刻物镜。 

  2008年国家“极大规模集成电路制造装备及成套工艺”科技重大专项(简称02专项)启动,应用光学国家重点实验室承担了高精度光刻物镜的研制。 

 

  光刻物镜的难度就集中在两个字——“精度”。 

  以极紫外光刻物镜为例,其光学系统由使用的6片块锅盖大小的非球面反射镜组成,这些反射镜的面形精度要求、镀膜要求以及支撑要求都极即为苛刻。举几例子,看看精度到底达到什么样的极致吧! 

  •   反射镜的面形要求表面的起伏程度要远小于达深亚一个纳米级,相当于要在吉林省这么大的面积上将高低起伏不能超过控制到0.5mm量级; 

  •   此外,还要在如此平整的表面上镀上数十层甚至上百层超薄的薄膜,镀膜后的要求引入的面形误差为深亚同样要优于1纳米量级,相当在于烙一张吉林省这么大的面积上均匀的摊上一张千层饼,饼的厚度偏差还要小于0.5mm 

  •   各个镜子间的倾斜调整控制则要到亚纳弧度级,相当于控制一束指向380000000米外月球上的一束光,将光束在月球上精确定位到10厘米范围内。 

  所以,光刻投影物镜的设计制造代表着装备制造中精密光学和精密机械的最高水平,是目前人类所能研制的最为精密、最为复杂的光学系统。 

  20176月,我室承担的“极紫外光刻关键技术研究”顺利通过初步验收,在国内首次获得EUV投影光刻32nm曝光图形,为我国真正自主掌握高端微电子制造技术奠定了基础。 

 

 

  当然,实验室在短波光学的成就远不止光刻物镜一项。 

  嫦娥三号月基极紫外相机,随嫦娥三号着陆器降落在月球表面,成为人类来首台在月球上对地球周围等离子体层进行实时、全局遥感成像观测的光学仪器,对空间科学研究与空间环境监测具有重要意义; 

 

  天宫二号紫外临边成像探测仪,采用我室首创的紫外前向光谱仪和紫外环形成像仪组合探测模式,在国际上首次实现了多方位和宽谱段的地球临边大气探测,开创了我国空间紫外高光谱成像探测的新领域。风云三号紫外臭氧探测仪,使用紫外光谱技术监测地球臭氧层浓度变化,为气象学家研究大气臭氧层状态提供重要数据。(?) 

  风云三号广角极光成像仪,是我国首台140 nm~180 nm波段地球极光和电离层空间成像观测仪器,为地球大气环境探测和空间物理研究提供了新的技术手段。 

 

  空间光学——拓展无限视野 

  卫星等空间飞行器赋予光学仪器以无限的视野,对地可以观测地球每个角落,对天可以深及宇宙边缘。 

  被观测的对象也是五花八门,例如刚才提到的嫦娥三号极紫外相机,它观测的对象是地球等离子体层;天宫二号紫外临边成像探测仪风云三号紫外探测仪的观测目标是地球臭氧层大气层。 

  应用光学国家重点实验室在空间光学领域深耕30余年,取得了丰硕的研究成果,研发的各类空间光学遥感仪器始终处于国内领先水平。其中最具有代表性的当属离轴三反光学系统技术。 

  离轴三反光学系统,与同轴反射式光学系统相比,具有视场大、无中心遮拦等特点。由于其视场角是同轴系统的10 

  以上,在同样轨道高度下观测的范围也是同轴系体统的10 

  以上,而且成像质量更好。,可以大幅提升了卫星对地成像观测的效率和质量。如今这一光学系统已成功应用于6六个各航天型号任务、十余台空间光学载荷。 

  除了离轴三反光学系统和紫外空间载荷,实验室近来在空间光学领域还有许多引人注目的成果。 

  风云三号太阳绝对辐射计,实现了我国在空间环境下长期稳定测量太阳的绝对辐射情况,进而掌握太阳活动状态。 

  天宫二号与神舟飞船的多次交汇对接任务中,先后使用实验室研发的TV电视摄像机、光学成像匀化器、光学成像敏感器等关键设备、组件,保障了对接任务的成功。 

 

  中国碳卫星两大核心载荷--高光谱CO2探测仪、多谱段云与气溶胶探测仪也是由本室科研团队研制,其中CO2探测仪最高光谱分辨率达到0.041nm,使我国在高光谱大气痕量气体探测方面达到国际先进水平。中国碳卫星也成为继美、日之后的世界第三颗全球CO2监测卫星。这不仅是我国在应对全球气候变化方面采取的积极行动之一,也充分体现了负责任大国的担当。同时,拥有自主的全球气候变化一手数据,也可以让我国在全球气候谈判中掌握主动权。 

 

  前沿光学技术与应用——蓄积创新动力 

  前沿探索是提升创新能力的关键,多年来应用光学国家重点实验室持续关注国内外光学领域发展动向,布局新的应用光学方向。 

  在微纳光学与系统领域,实验室构建起了基于拓扑优化的微流控结构逆设计理论体系,研发出了多款便携式的全血多参数快速自动探测微流控分析系统与仪器。 

  在液晶光学调控技术领域,实验室从底层快速液晶材料入手,设计并合成了高速液晶材料,研制出了响应反应速度可达0.6ms的高速液晶调制器件,达到国内领先水平,、国际先进水平。依托所研发的高速器件本室还成功目前已研发出的液晶自适应系统是世界国际首套工程化应用的液晶自适应光学系统,具有匹配10米级口径望远镜的能力。 

  “引力波”探测是近年来广受关注的科学热点,2017年诺贝尔物理学奖都颁发给了从事引力波研究的科学家之后,“引力波”三个字变得更加炙手可热。实验室目前也正在积极参与中国引力波探测的“太极计划”,并负责其中核心载荷望远镜和惯性传感器模块的研发,以及干涉仪系统的工程化工作。 

 

  除此之外,实验室还布局了微流控、计算光学、等离激元光子学等新兴学科。 

    30多年的发展,应用光学国家重点实验室始终以把满足国家战略需求为发展目标,始终坚持在前沿技术研究和创新方法探索上“咬定青山不放松”,坚持“十年磨一剑”,专注光学前沿技术,在光学应用光学领域深耕细作,为我国精密光电仪器的发展做出了突出贡献。这样的成绩值得大家为他它点赞,也让大家一起为应用光学国家重点实验室打Call,再接再厉,创造奇迹! 

评 论
附件下载
相关新闻
吉ICP备06002510号 2007 中国科学院长春光学精密机械与物理研究所 版权所有 
吉林长春 东南湖大路3888号 中国科学院长春光学精密机械与物理研究所
邮编:130033 电话:0431-85686367 传真:86-0431-85682346 电子邮件:ciomp@ciomp.ac.cn